Authors
Jian Cheng
Publication date
2012/5/30
Institution
Université Nice Sophia Antipolis
Description
Diffusion MRI (dMRI) is the unique technique to infer the microstructure of the white matter in vivo and noninvasively, by modeling the diffusion of water molecules. Ensemble Average Propagator (EAP) and Orientation Distribution Function (ODF) are two important Probability Density Functions (PDFs) which reflect the water diffusion. Estimation and processing of EAP and ODF is the central problem in dMRI, and is also the first step for tractography. Diffusion Tensor Imaging (DTI) is the most widely used estimation method which assumes EAP as a Gaussian distribution parameterized by a tensor. Riemannian framework for tensors has been proposed successfully in tensor estimation and processing. However, since the Gaussian EAP assumption is oversimplified, DTI can not reflect complex microstructure like fiber crossing. High Angular Resolution Diffusion Imaging (HARDI) is a category of methods proposed to avoid the limitations of DTI. Most HARDI methods like Q-Ball Imaging (QBI) need some assumptions and only can handle the data from single shell (single value), which are called as single shell HARDI (sHARDI) methods. However, with the development of scanners and acquisition methods, multiple shell data becomes more and more practical and popular. This thesis focuses on the estimation and processing methods in multiple shell HARDI (mHARDI) which can handle the diffusion data from arbitrary sampling scheme. There are many original contributions in this thesis. -First, we develop the analytical Spherical Polar Fourier Imaging (SPFI), which represents the signal using SPF basis and obtains EAP and its various features including …
Total citations
201520162017201820192020202120222122111