Authors
Dominic W Berry, Yuan Su, Casper Gyurik, Robbie King, Joao Basso, Alexander Del Toro Barba, Abhishek Rajput, Nathan Wiebe, Vedran Dunjko, Ryan Babbush
Publication date
2022/9/27
Journal
arXiv preprint arXiv:2209.13581
Description
Lloyd et al. were first to demonstrate the promise of quantum algorithms for computing Betti numbers, a way to characterize topological features of data sets. Here, we propose, analyze, and optimize an improved quantum algorithm for topological data analysis (TDA) with reduced scaling, including a method for preparing Dicke states based on inequality testing, a more efficient amplitude estimation algorithm using Kaiser windows, and an optimal implementation of eigenvalue projectors based on Chebyshev polynomials. We compile our approach to a fault-tolerant gate set and estimate constant factors in the Toffoli complexity. Our analysis reveals that super-quadratic quantum speedups are only possible for this problem when targeting a multiplicative error approximation and the Betti number grows asymptotically. Further, we propose a dequantization of the quantum TDA algorithm that shows that having exponentially large dimension and Betti number are necessary, but insufficient conditions, for super-polynomial advantage. We then introduce and analyze specific problem examples which have parameters in the regime where super-polynomial advantages may be achieved, and argue that quantum circuits with tens of billions of Toffoli gates can solve seemingly classically intractable instances.
Total citations
Scholar articles
DW Berry, Y Su, C Gyurik, R King, J Basso, ADT Barba… - arXiv preprint arXiv:2209.13581, 2022
DW Berry, Y Su, C Gyurik, R King, J Basso, ADT Barba… - PRX Quantum, 2024