Authors
Mostafa Khezri, Alex Opremcak, Zijun Chen, Kevin C Miao, Matt McEwen, Andreas Bengtsson, Theodore White, Ofer Naaman, Daniel Sank, Alexander N Korotkov, Yu Chen, Vadim Smelyanskiy
Publication date
2023/11/3
Journal
Physical Review Applied
Volume
20
Issue
5
Pages
054008
Publisher
American Physical Society
Description
Superconducting qubits typically use a dispersive readout scheme, where a resonator is coupled to a qubit such that its frequency is qubit-state dependent. Measurement is performed by driving the resonator, where the transmitted resonator field yields information about the resonator frequency and thus the qubit state. Ideally, we could use arbitrarily strong resonator drives to achieve a target signal-to-noise ratio in the shortest possible time. However, experiments have shown that when the average resonator photon number exceeds a certain threshold, the qubit is excited out of its computational subspace in a process we refer to as a measurement-induced state transition (MIST). These transitions degrade readout fidelity, and constitute leakage, which precludes further operation of the qubit in, for example, error correction. Here we study these transitions experimentally with a transmon qubit by measuring their …
Total citations
2022202320241168
Scholar articles