Authors
Nicholas C Rubin, Dominic W Berry, Fionn D Malone, Alec F White, Tanuj Khattar, A Eugene DePrince III, Sabrina Sicolo, Michael Küehn, Michael Kaicher, Joonho Lee, Ryan Babbush
Publication date
2023/10/6
Journal
PRX Quantum
Volume
4
Issue
4
Pages
040303
Publisher
American Physical Society
Description
The simulation of chemistry is among the most promising applications of quantum computing. However, most prior work exploring algorithms for block encoding, time evolving, and sampling in the eigenbasis of electronic structure Hamiltonians has either focused on modeling finite-sized systems, or has required a large number of plane-wave basis functions. In this work, we extend methods for quantum simulation with Bloch orbitals constructed from symmetry-adapted atom-centered orbitals so that one can model periodic ab initio Hamiltonians using only a modest number of basis functions. We focus on adapting existing algorithms based on combining qubitization with tensor factorizations of the Coulomb operator. Significant modifications of those algorithms are required to obtain an asymptotic speedup leveraging translational (or, more broadly, Abelian) symmetries. We implement block encodings using known …
Total citations
Scholar articles
NC Rubin, DW Berry, FD Malone, AF White, T Khattar… - PRX Quantum, 2023