Authors
Kostyantyn Kechedzhi, Vadim Smelyanskiy, Jarrod R McClean, Vasil S Denchev, Masoud Mohseni, Sergei Isakov, Sergio Boixo, Boris Altshuler, Hartmut Neven
Publication date
2018/7/12
Journal
arXiv preprint arXiv:1807.04792
Description
We analyze a new computational role of coherent multi-qubit quantum tunneling that gives rise to bands of non-ergodic extended (NEE) quantum states each formed by a superposition of a large number of computational states (deep local minima of the energy landscape) with similar energies. NEE provide a mechanism for population transfer (PT) between computational states and therefore can serve as a new quantum subroutine for quantum search, quantum parallel tempering and reverse annealing optimization algorithms. We study PT in a quantum n-spin system subject to a transverse field where the energy function encodes a classical optimization problem over the set of spin configurations . Given an initial spin configuration with low energy, PT protocol searches for other bitstrings at energies within a narrow window around the initial one. We provide an analytical solution for PT in a simple yet nontrivial model: randomly chosen marked bit-strings are assigned energies within a narrow strip , while the rest of the states are assigned energy 0. We find that the scaling of a typical PT runtime with n and L is the same as that in the multi-target Grover's quantum search algorithm, except for a factor that is equal to for finite transverse field . Unlike the Hamiltonians used in analog quantum unstructured search algorithms known so far, the model we consider is non-integrable and population transfer is not exponentially sensitive in n to the weight of the driver Hamiltonian. We study numerically the PT subroutine as a part of quantum parallel tempering algorithm for a number of examples of binary …
Total citations
201920202021202220232024726152
Scholar articles
K Kechedzhi, V Smelyanskiy, JR McClean… - arXiv preprint arXiv:1807.04792, 2018