Authors
Pedro CS Costa, Dong An, Yuval R Sanders, Yuan Su, Ryan Babbush, Dominic W Berry
Publication date
2022/10/7
Journal
PRX quantum
Volume
3
Issue
4
Pages
040303
Publisher
American Physical Society
Description
Recently, several approaches to solving linear systems on a quantum computer have been formulated in terms of the quantum adiabatic theorem for a continuously varying Hamiltonian. Such approaches have enabled near-linear scaling in the condition number κ of the linear system, without requiring a complicated variable-time amplitude amplification procedure. However, the most efficient of those procedures is still asymptotically suboptimal by a factor of log(κ). Here, we prove a rigorous form of the adiabatic theorem that bounds the error in terms of the spectral gap for intrinsically discrete-time evolutions. In combination with the qubitized quantum walk, our discrete adiabatic theorem gives a speed-up for all adiabatic algorithms. Here, we use this combination to develop a quantum algorithm for solving linear systems that is asymptotically optimal, in the sense that the complexity is strictly linear in κ, matching a …
Total citations
202220232024152820
Scholar articles