Authors
Jordan Cotler, Thomas Schuster, Masoud Mohseni
Publication date
2022/8/3
Journal
arXiv preprint arXiv:2208.02256
Description
We establish that there are properties of quantum many-body dynamics which are efficiently learnable if we are given access to out-of-time-order correlators (OTOCs), but which require exponentially many operations in the system size if we can only measure time-ordered correlators. This implies that any experimental protocol which reconstructs OTOCs solely from time-ordered correlators must be, in certain cases, exponentially inefficient. Our proofs leverage and generalize recent techniques in quantum learning theory. Along the way, we elucidate a general definition of time-ordered versus out-of-time-order experimental measurement protocols, which can be considered as classes of adaptive quantum learning algorithms. Moreover, our results provide a theoretical foundation for novel applications of OTOCs in quantum simulations.
Total citations
2023202421
Scholar articles