Authors
Paul V Klimov, Andreas Bengtsson, Chris Quintana, Alexandre Bourassa, Sabrina Hong, Andrew Dunsworth, Kevin J Satzinger, William P Livingston, Volodymyr Sivak, Murphy Yuezhen Niu, Trond I Andersen, Yaxing Zhang, Desmond Chik, Zijun Chen, Charles Neill, Catherine Erickson, Alejandro Grajales Dau, Anthony Megrant, Pedram Roushan, Alexander N Korotkov, Julian Kelly, Vadim Smelyanskiy, Yu Chen, Hartmut Neven
Publication date
2024/3/18
Journal
Nature Communications
Volume
15
Issue
1
Pages
2442
Publisher
Nature Publishing Group UK
Description
A foundational assumption of quantum error correction theory is that quantum gates can be scaled to large processors without exceeding the error-threshold for fault tolerance. Two major challenges that could become fundamental roadblocks are manufacturing high-performance quantum hardware and engineering a control system that can reach its performance limits. The control challenge of scaling quantum gates from small to large processors without degrading performance often maps to non-convex, high-constraint, and time-dynamic control optimization over an exponentially expanding configuration space. Here we report on a control optimization strategy that can scalably overcome the complexity of such problems. We demonstrate it by choreographing the frequency trajectories of 68 frequency-tunable superconducting qubits to execute single- and two-qubit gates while mitigating computational errors …
Total citations
Scholar articles
PV Klimov, A Bengtsson, C Quintana, A Bourassa… - Nature Communications, 2024