Authors
Murphy Yuezhen Niu, Alexander Zlokapa, Michael Broughton, Sergio Boixo, Masoud Mohseni, Vadim Smelyanskyi, Hartmut Neven
Publication date
2022/6/3
Journal
Physical review letters
Volume
128
Issue
22
Pages
220505
Publisher
American Physical Society
Description
Generative adversarial networks (GANs) are one of the most widely adopted machine learning methods for data generation. In this work, we propose a new type of architecture for quantum generative adversarial networks (an entangling quantum GAN, EQ-GAN) that overcomes limitations of previously proposed quantum GANs. Leveraging the entangling power of quantum circuits, the EQ-GAN converges to the Nash equilibrium by performing entangling operations between both the generator output and true quantum data. In the first multiqubit experimental demonstration of a fully quantum GAN with a provably optimal Nash equilibrium, we use the EQ-GAN on a Google Sycamore superconducting quantum processor to mitigate uncharacterized errors, and we numerically confirm successful error mitigation with simulations up to 18 qubits. Finally, we present an application of the EQ-GAN to prepare an approximate …
Total citations
20212022202320243203615
Scholar articles
MY Niu, A Zlokapa, M Broughton, S Boixo, M Mohseni… - Physical review letters, 2022