Authors
Evan Peters, João Caldeira, Alan Ho, Stefan Leichenauer, Masoud Mohseni, Hartmut Neven, Panagiotis Spentzouris, Doug Strain, Gabriel N Perdue
Publication date
2021/11/11
Journal
npj Quantum Information
Volume
7
Issue
1
Pages
161
Publisher
Nature Publishing Group UK
Description
Quantum kernel methods show promise for accelerating data analysis by efficiently learning relationships between input data points that have been encoded into an exponentially large Hilbert space. While this technique has been used successfully in small-scale experiments on synthetic datasets, the practical challenges of scaling to large circuits on noisy hardware have not been thoroughly addressed. Here, we present our findings from experimentally implementing a quantum kernel classifier on real high-dimensional data taken from the domain of cosmology using Google’s universal quantum processor, Sycamore. We construct a circuit ansatz that preserves kernel magnitudes that typically otherwise vanish due to an exponentially growing Hilbert space, and implement error mitigation specific to the task of computing quantum kernels on near-term hardware. Our experiment utilizes 17 qubits to classify …
Total citations
2021202220232024825288
Scholar articles
E Peters, J Caldeira, A Ho, S Leichenauer, M Mohseni… - npj Quantum Information, 2021