Authors
Raffaele Santagati, Jianwei Wang, Antonio A Gentile, Stefano Paesani, Nathan Wiebe, Jarrod R McClean, Sam Morley-Short, Peter J Shadbolt, Damien Bonneau, Joshua W Silverstone, David P Tew, Xiaoqi Zhou, Jeremy L O’Brien, Mark G Thompson
Publication date
2018/1/26
Journal
Science advances
Volume
4
Issue
1
Pages
eaap9646
Publisher
American Association for the Advancement of Science
Description
The efficient calculation of Hamiltonian spectra, a problem often intractable on classical machines, can find application in many fields, from physics to chemistry. We introduce the concept of an “eigenstate witness” and, through it, provide a new quantum approach that combines variational methods and phase estimation to approximate eigenvalues for both ground and excited states. This protocol is experimentally verified on a programmable silicon quantum photonic chip, a mass-manufacturable platform, which embeds entangled state generation, arbitrary controlled unitary operations, and projective measurements. Both ground and excited states are experimentally found with fidelities >99%, and their eigenvalues are estimated with 32 bits of precision. We also investigate and discuss the scalability of the approach and study its performance through numerical simulations of more complex Hamiltonians. This result …
Total citations
20172018201920202021202220232024212293349363415
Scholar articles
R Santagati, J Wang, AA Gentile, S Paesani, N Wiebe… - Science advances, 2018