Authors
Charles Neill, Pedran Roushan, K Kechedzhi, Sergio Boixo, Sergei V Isakov, V Smelyanskiy, A Megrant, B Chiaro, A Dunsworth, K Arya, Rami Barends, B Burkett, Y Chen, Z Chen, A Fowler, B Foxen, M Giustina, R Graff, E Jeffrey, T Huang, J Kelly, P Klimov, E Lucero, J Mutus, M Neeley, C Quintana, D Sank, A Vainsencher, J Wenner, TC White, Hartmut Neven, John M Martinis
Publication date
2018/4/13
Journal
Science
Volume
360
Issue
6385
Pages
195-199
Publisher
American Association for the Advancement of Science
Description
A key step toward demonstrating a quantum system that can address difficult problems in physics and chemistry will be performing a computation beyond the capabilities of any classical computer, thus achieving so-called quantum supremacy. In this study, we used nine superconducting qubits to demonstrate a promising path toward quantum supremacy. By individually tuning the qubit parameters, we were able to generate thousands of distinct Hamiltonian evolutions and probe the output probabilities. The measured probabilities obey a universal distribution, consistent with uniformly sampling the full Hilbert space. As the number of qubits increases, the system continues to explore the exponentially growing number of states. Extending these results to a system of 50 qubits has the potential to address scientific questions that are beyond the capabilities of any classical computer.
Total citations
2017201820192020202120222023202435110810790706021
Scholar articles