Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead

C Rudin - Nature machine intelligence, 2019 - nature.com
Black box machine learning models are currently being used for high-stakes decision
making throughout society, causing problems in healthcare, criminal justice and other …

A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models

E Christodoulou, J Ma, GS Collins… - Journal of clinical …, 2019 - Elsevier
Objectives The objective of this study was to compare performance of logistic regression
(LR) with machine learning (ML) for clinical prediction modeling in the literature. Study …

Anomaly detection in time series: a comprehensive evaluation

S Schmidl, P Wenig, T Papenbrock - Proceedings of the VLDB …, 2022 - dl.acm.org
Detecting anomalous subsequences in time series data is an important task in areas
ranging from manufacturing processes over finance applications to health care monitoring …

Interpretable machine learning–a brief history, state-of-the-art and challenges

C Molnar, G Casalicchio, B Bischl - Joint European conference on …, 2020 - Springer
We present a brief history of the field of interpretable machine learning (IML), give an
overview of state-of-the-art interpretation methods and discuss challenges. Research in IML …

Wilds: A benchmark of in-the-wild distribution shifts

PW Koh, S Sagawa, H Marklund… - International …, 2021 - proceedings.mlr.press
Distribution shifts—where the training distribution differs from the test distribution—can
substantially degrade the accuracy of machine learning (ML) systems deployed in the wild …

[BOOK][B] Fairness and machine learning: Limitations and opportunities

S Barocas, M Hardt, A Narayanan - 2023 - books.google.com
An introduction to the intellectual foundations and practical utility of the recent work on
fairness and machine learning. Fairness and Machine Learning introduces advanced …

The promise of machine learning in predicting treatment outcomes in psychiatry

AM Chekroud, J Bondar, J Delgadillo… - World …, 2021 - Wiley Online Library
For many years, psychiatrists have tried to understand factors involved in response to
medications or psychotherapies, in order to personalize their treatment choices. There is …

Ten quick tips for machine learning in computational biology

D Chicco - BioData mining, 2017 - Springer
Abstract Machine learning has become a pivotal tool for many projects in computational
biology, bioinformatics, and health informatics. Nevertheless, beginners and biomedical …

A practical tutorial on bagging and boosting based ensembles for machine learning: Algorithms, software tools, performance study, practical perspectives and …

S González, S García, J Del Ser, L Rokach, F Herrera - Information Fusion, 2020 - Elsevier
Ensembles, especially ensembles of decision trees, are one of the most popular and
successful techniques in machine learning. Recently, the number of ensemble-based …

Text as data: The promise and pitfalls of automatic content analysis methods for political texts

J Grimmer, BM Stewart - Political analysis, 2013 - cambridge.org
Politics and political conflict often occur in the written and spoken word. Scholars have long
recognized this, but the massive costs of analyzing even moderately sized collections of …